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Maximum Likelihood Estimates

• Likelihood function. The likelihood function of n random variables

y1, · · · , yn is defined to be the joint density of the n random variables,

say fy(y1, · · · , yn;θ), which is considered to be a function of θ.

In particular, if y1, · · · , yn are i.i.d. (which is called a ”random sam-

ple”) from the p.d.f. f(y;θ), then the likelihood function is f(y1;θ) ×
· · · × f(yn;θ).

Remark. To remind ourselves to think of the likelihood function as

a function of θ, in the following we shall use L(θ; y1, · · · , yn), L(θ; y) or

L(θ) for the likelihood function fy(y1, · · · , yn;θ).
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• Maximum likelihood Estimate (MLE):

θ̂ = arg min
θ∈Θ

L(θ),

where Θ is the parameter space of interest.

Example 1. If y1, · · · , yn are i.i.d. from the Bernoulli distribution

f(y; p) = py(1− p)1−yI{0,1}(y), 0 ≤ p ≤ 1,

then the MLE of p is p̂ =
1

n

n∑
i=1

yi = ȳ.
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Example 2. If yi
i.i.d.∼ N(µ, σ2), then the MLE of (µ, σ2)′ is

(
µ̂

σ̂2

)
=

 ȳ

1

n

n∑
i=1

(yi − ȳ)2

 .

Example 3. If yi
indep.∼ N(x′iβ, σ

2), then the MLE of (β, σ2)′ is (X ′X)−1X ′y

1

n

n∑
i=1

(yi − x′iβ̂)2

 .

Here, we denoted (X ′X)−1X ′y by β̂.
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Example 4. (A location-dispersion model) If

yi
indep.∼ N

(
x′iβ, e

x′
iα
)
,

then

L(β,α) = (2π)−n/2
n∏

i=1

e−x
′
iα/2 · exp

(
−1

2

n∑
i=1

(yi − x′iβ)2e−x
′
iα

)
,

hence the log-likelihood function l(β,α) is

l(β,α) = logL(β,α) = −n
2

log 2π − 1

2

n∑
i=1

α′xi

−1

2

n∑
i=1

(yi − x′iβ)2e−x
′
iα,
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here, log is the natural log function.

Define η = (β,α)′. The MLE of η is the solution to
∂l(η)

∂η
= 0, which

has no closed from. We therefore need to solve the equation numerically.

This example motivates us to explore the behavior of MLE 
without having its closed form. Let's start with some ”non-asymptotic” 
results before moving on to asymptotic investigations.
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Invariance Principle

• Invariance principle of MLE.

If θ̂ is the MLE of θ, then τ (θ̂) is the MLE of τ (θ), where τ (·) is a

well-defined function.

proof. Define

M(τ ) = sup
{θ:τ (θ)=τ}

L(θ) and Λ = {τ (θ) : θ ∈ Θ},

where M(τ ) is the likelihood function induced by τ (·).

Then, for any τ ∈ Λ,

M(τ ) = sup
{θ:τ (θ)=τ}

L(θ) ≤ sup
θ∈Θ

L(θ) = L(θ̂)

= sup
{θ:τ (θ)=τ (θ̂)}

L(θ) = M(τ (θ̂)).
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Hence

M(τ (θ̂)) = sup
τ∈Λ

M(τ ) = M(τ̂ ),

where τ̂ is the MLE of τ , yielding the desired conclusion.
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Some Facts

Fact 1. E(
∂

∂θ
l(θ)) = 0.

Sketch:

E(
∂

∂θ
l(θ)) =

∫
∂

∂θ
l(θ)fy(y;θ)dy

=

∫
1

fy(y;θ)

∂

∂θ
fy(y;θ)fy(y;θ)dy

(∗)
=

∂

∂θ

∫
fy(y;θ)dy =

∂

∂θ
1 = 0.

(∗): use the regularity condition: ”
∫

” and ”
∂

∂θ
”

can be exchanged.
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Fact 2.

E

[(
∂

∂θ
l(θ)

)(
∂

∂θ
l(θ)

)′]
= E

(
− ∂2

∂θ2
l(θ)

)
.

The proof is similar to that of Fact 1.
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Cramér-Rao lower bound

> Cramér-Rao lower bound (vector version).

Let T be an unbiased estimator of θ. Then,

V ar(T) ≥ I−1
n (θ),

where In(θ) = E

[(
∂

∂θ
l(θ)

)(
∂

∂θ
l(θ)

)′]
.

proof. Define T∗ = I−1
n (θ)

∂

∂θ
l(θ). Then, by Fact 1, E(T∗) = 0.

In addition,

V ar(T∗) = E(T∗T′∗) = I−1
n (θ).
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Now for any a with ‖a‖ = 1, we have

V ar(a′T) = E([a′(T− θ)]2) (T is unbiased)

= E[{a′[(T− θ)−T∗] + a′T∗}2]

≥ a′I−1
n (θ)a + 2a′E[((T− θ)−T∗)T∗

′
]a

= a′I−1
n (θ)a + 2a′[E((T− θ)T∗

′
)− I−1

n (θ)]a.

Moreover, we have E(θT∗
′
) = 0, where 0 is the zero matrix, and

E(TT∗
′
) = E

(
T

1

fy(y;θ)

(
∂

∂θ
fy(y;θ)

)′)
I−1
n (θ)

by definition of T∗
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=

[∫
T

(
∂

∂θ
fy(y;θ)

)′
dy

]
I−1
n (θ)

=

(
∂

∂θ
θ

)
I−1
n (θ) (T is unbiased)

= I−1
n (θ) (since

∂θ

∂θ
= I).

As a result,

V ar(a′T) ≥ a′I−1
n (θ)a,

yielding the desired conclusion.
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